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Three-dimensional solutions have been obtained for the steady simple shear flow over 
a spherical particle in the intermediate Reynolds number range 0.1 < Re d 100. The 
shear flow was generated by two walls which move at the same speed but in opposite 
directions, and the particle was located in the middle of the gap between the walls. The 
particlewall interaction is treated by introducing a fully three-dimensional Chimera or 
overset grid scheme. The Chimera grid scheme allows each component of a flow to be 
accurately and efficiently treated. For low Reynolds numbers and without any wall 
influence we have verified the solution of Taylor (1932) for the shear around a rigid 
sphere. With increasing Reynolds numbers the angular velocity for zero moment for 
the sphere decreases with increasing Reynolds number. The influence of the wall has 
been quantified with the global particle surface characteristics such as net torque and 
Nusselt number. A detailed analysis of the influence of the wall distance and Reynolds 
number on the surface distributions of pressure, shear stress and heat transfer has also 
been carried out. 

1. Introduction 
This investigation is concerned with the flow over a spherical particle in shear flow 

between moving walls, which is of fundamental interest in many engineering 
applications. Clift, Grace & Weber (1978) give an extensive review of theoretical and 
experimental work on bubbles, drops and particles, and in much of the previous work 
the particle has been subjected to a uniform flow and/or low shear rates. Recent 
progress in numerical methods and computer hardware has made it possible to extend 
detailed numerical studies to three-dimensional flows. Dandy & Dwyer (1990) 
investigated the fundamental flow over a sphere in shear, and succeeded in confirming 
Saffman’s analytic work on the lift of a particle. However, in many practical flows the 
particle moving with the fluid is more realistic. For this flow the particle is subjected 
to a simple shear flow with a positive flow at the top of the particle and a negative flow 
at the bottom. Taylor (1932), Rumscheidt & Mason (1961) and Bartok & Mason (1958) 
did extensive analytic and experimental work on Stokes flows, but they did not include 
inertia effects in the calculations. 

We have investigated the flow around a spherical particle which is subjected to a 
Couette flow between two moving walls, and we have considered large as well as small 
gap widths. For a large gap width the flow field will simulate a particle moving in a 
shear field, and for a small gap width the influence of the wall will be strong. We have 
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also studied the influence of particle rotation, and for all flows the torque coefficient 
has been determined. 

The three-dimensional Navier-Stokes equations have been solved with a finite 
volume numerical formulation which includes the thermal energy equation. The 
complex geometry introduced by the particle and wall has been treated with a three- 
dimensional Chimera grid scheme. The Chimera grid approach allows the treatment of 
multiple body configurations, and it allows each component of the flow to be gridded 
separately and overset onto a main grid. Typically, there is a main grid which in our 
case is a simple rectangular grid stretched over the entire gap between the two moving 
walls. A minor grid is generated about the particle to resolve the flow around it and 
the regions of high gradients. The fundamental ideas of the Chimera grid scheme 
approach are described by Benek et al. (1985), Buning et al. (1988) and Dougherty 
(1985), and the majority of previous applications have been to aerodynamic flows. 

2. Problem statement and numerical approach 
We begin by considering a particle at temperature T p  held fixed in the middle of a 

Couette flow at temperature T, between the two moving walls with a gap width 2h, 
figure 1.  The particle is spherical with a diameter D and rigid with no slip at the surface. 
The two walls create a simple shear flow with the shear gradient y. The particle can 
rotate with fixed angular velocity o, and we further assume that the fluid is 
incompressible with a constant density p and dynamic viscosity p. Each element in the 
geometry is associated with a boundary-fitted coordinate system. The curvilinear 
coordinates {, q and 5 with no index are used to describe the major mesh in the gap, 
and the boundary-fitted coordinate system cl, vl, and describes the mesh of the 
particle. 

The Reynolds number Re for this flow is defined by the shear gradient y as 

Re = pyD2/,u. 

The flow equations are the incompressible Navier-Stokes momentum equations, 
continuity, and the thermal energy equation in integral form. The equations are non- 
dimensionalized using the diameter D of the particle as a characteristic length, y D  as 
a characteristic velocity, T p  - T, as a characteristic temperature difference, and p(yD)' 
as the pressure scale. The dimensionless forms of the governing equations are 

where the velocity vector is V = ui+ vj+ d, corresponding to the Cartesian coordinate 
components, p is the dynamic flow pressure, z the viscous stress tensor, and T 
temperature. The Prandtl number is Pr = v/a, with v the kinematic viscosity and a the 
thermal diffusivity. The Nusselt number for the particle is defined by 

1 P I -  
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FIGURE 1. Schematic description of the problem. 

with A ,  the surface area of the particle. For a simple shear flow with the two walls 
moving with the same speed in opposite directions there is neither a drag nor a lift force 
on the particle owing to symmetry and no net flow in the gap. 

Another important quantity for this problem is the torque on the particle caused by 
the shear flow. The torque coefficient, ct is defined as 

where 4 x r is the local torque on the particle caused by the tangential projection of the 
fluid forces on the surface. We have also studied the distribution of the pressure, shear 
stress, and heat transfer over the surface of the sphere. The shear stress tensor has been 
calculated with all nine components at each point on the surface, and the force vector 
has been determined from the stress tensor by the following relationship 

where dA,, dA, and dA, are the three components of the area normal vector. The 
force vector (I$,&,&) was divided into tangential and normal components. The 
dimensionless pressure p ,  shear stress 7, and local Nusselt number Nu, are defined in 
the following way 

The solution algorithm for the equations is described in detail by Dwyer (1989), and 
it will only be briefly outlined here. The three velocity components and the temperature 
are marched in time using an implicit predictor/corrector scheme along alternating 
coordinate directions. The pressure change or correction algorithm consists of solving 
a Poisson equation derived from the continuity equation. In general it can be said that 
the stability and convergence properties of the numerical method are similar to single 
mesh calculations. However, there has been an approximate 30-50% increase in the 
number of time iterations needed for convergence, and this is primarily due to the 
transfer of information between meshes. In this work we have used second-order 
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central differences everywhere, and an artificial viscosity has not been introduced into 
the numerical method. However, at higher Reynolds numbers it may be necessary to 
introduce smoothing techniques if grid resolution requirements become excessive. All 
the calculations can be performed on a 80486 based Personal Computer with 16 MB 
of memory. For steady-state solutions 600 time iterations are typically taken with a 
non-dimensional viscous time step of 0.001, which increased by 3 % until a maximum 
value of 0.01. (Note: dimensionless time is defined as t = (t'v)/Dz with t+ as the real 
time.) 

3. The Chimera grid scheme approach 
In the Chimera grid approach the grid generation is simplified in that individual 

particle grids are generated independently and superimposed over the main mesh. All 
grids are structured in the computational space, and structured grids lend themselves 
to implicit algorithms which have good convergence properties with the full 
Navier-Stokes equations. The main grid is rectangular, and the minor grid is body 
fitted to the particle. The grids are stretched in all three directions of the coordinate 
system to improve resolution near boundaries and/or interesting flow features. 

Figure 2 shows a typical Chimera grid configuration in the symmetry plane of the 
particle problem under consideration. In this example the walls are very close to the 
particle, and the main mesh is refined close to the walls to resolve high gradients caused 
by particle-wall interactions. For the particle grid we have chosen a spherical mesh 
which is refined in the radial direction to resolve the flow near the surface of the 
particle. Other geometries are not excluded, and it is also possible to study more 
complex particle geometries with the use of hyperbolic or elliptic grid generators. 

The typical Chimera scheme can be divided into two major parts: 

(i) Determination of the holes and fringe points 
The holes are the points in the major mesh where the rigid body is located, and these 

points must be excluded from the solution procedure. In figure 2 the holes are marked 
with the open squares, and the solution solver skips these points with the use of an 
integer flag set to zero for holes. The holes also can exist in the minor mesh, and this 
occurs when points in the minor mesh are located outside the main grid region. 

The solution variables of the two meshes are exchanged at special points, which 
completely enclose the holes. These special points are called 'fringe points', and they 
serve as the final points on the mesh where information is transmitted between the two 
grids. In the computer code itself they are treated like boundary conditions. In figure 
2 the fringe points are marked with the filled squares, and the solution values are 
determined by three-dimensional interpolation from the minor grid cell where the 
fringe points are located. 

(ii) The interpolation scheme 
An important feature of the Chimera method is its ability to accurately interpolate 

the solution from one mesh to another at the fringe points. This is accomplished with 
the use of trilinear interpolation in the logical space of the body-fitted coordinate 
system (c, 7,o. The logical space, integer-ijk, is cubical while the physical space is 
curved, and the relationship between the two is nonlinear. A difficult part of the 
interpolation is to find the logical space location of the fringe point in the other mesh. 
The location has been found with the use of Newton's method to solve the defining 
nonlinear simultaneous equations. With the location known, it is then a simple 
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FIGURE 2 .  Typical Chimera grid configuration. 

procedure to interpolate between grid points without the inversion of matrices to solve 
the simultaneous equations. The detailed procedure is described by Nirschl, Dwyer & 
Denk (1993). 

The logical space coordinates for the fringe points are only calculated once at the 
beginning of the solution procedure. For a more difficult simulation with particle 
movement in a flow we have only to recalculate the location of the holes and fringe 
points. This is a significant advantage, since a remeshing is not necessary as the particle 
moves. A full simulation of the flow around a moving particle array will be feasible in 
the near future. 

The first validation of our Chimera scheme has been for a three-dimensional heat 
transfer problem in a square geometry where an exact solution exists. We have solved 
this problem with different numbers of grid points (from 21 x21 x21 up to 
41 x 41 x 41), different minor meshes (orthogonal and non-orthogonal) located in the 
middle of the major mesh, and different numbers of holes, and the single and Chimera 
mesh solutions were identical to better than four significant figures. In general, overlap 
between two grids is very useful, and our experience has shown that the holes of the 
major mesh should be at least four to five grid points within the minor mesh for good 
convergence properties. 

Another test problem was the well-known solution for the axisymmetric flow over 
a sphere in an unbounded fluid for Reynolds numbers in the range (0.1 < Re B 100). 
The main grid was a simple rectangular one, and around the particle we have chosen 
a three-dimensional spherical grid. Coarse solutions have been obtained with an 
accuracy of 10 YO for the drag coefficient on a mesh of 21 x 21 x 21 for both the major 
and the minor mesh. With 3 1 x 3 1 x 3 1 points we have been able to reproduce the single 
mesh solutions in the published literature. The location of the outer boundary of the 
minor mesh did not have a strong effect on the solution as long as the grid density at 
the particle surface was high enough to resolve the gradients. In the present paper the 
Chimera grid scheme will be tested and verified against the analytic solution of Taylor 
(1932) for the Stokes flow around a single particle in simple shear. 

A summary of the Chimera grid scheme approach is: 
(a) calculation of the main and minor mesh, 
(b) determination of the holes and fringe points, 
(c) determination of the fringe point locations in logical space for use with trilinear 

interpolation, 
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(d) iteration of the system of equations on the minor mesh, 
(e) interpolation of the variables of the minor mesh to the fringe points in the major 

cf> iteration of the system of equations in the major mesh, 
(g )  interpolation of the variables of the major mesh to the fringe points in the minor 

(h) repeat steps (d-g) until the solution is converged. 

mesh, 

mesh, 

4. Results and discussion 
4.1. Taylor’s solution for  Stokesflow 

For low Reynolds number flow over a rotating sphere in simple shear the solution has 
been obtained analytically by Taylor (1932), and Taylor’s results have been verified by 
the experiments and extensions of Rumscheidt & Mason (1961). An important result 
is the distribution of shear and normal stresses on the surface of the sphere, and the 
shear stress distribution in the symmetry plane is given as 

f, = $y cos 28, 

where the angle 0 is measured from the sphere rear stagnation point. The normal stress 
distribution is 

f, = $y sin 28 

and the solution is for a particle rotating with a dimensionless angular velocity of one 
half. For this angular velocity the net torque on the particle is zero. 

We have calculated this flow for a Reynolds number, Re = 0.1, and with a gap width 
of forty times the particle radius. A mesh of 31 x 31 x 41 grid points has been used in 
the main mesh and 3 1 x 3 1 x 3 1 points in the minor mesh. A comparison of the surface 
normal stress (pressure) distribution is shown in figure 3 (a)  for the numerical and the 
Taylor solution, and the agreement is good. The differences between the numerical and 
analytic values are less than 4%, and further improvements can be obtained by 
decreasing the Reynolds number in the calculations or by increasing the number of grid 
points in the angular direction. With the present numerical method it requires more 
iterations for low Reynolds number flow than at higher Reynolds number. This is due 
to the strong coupling in space between pressure and velocity, and the very diffusive 
nature of low Reynolds number flow. In some flows it may require as much as five 
times the number of iterations to obtain a fully converged result for the same geometry 
at very low Reynolds number. 

A similar comparison with the shear stress is given in figure 3(b), and again the 
agreement is quite good. The distributions are antisymmetric between the front and the 
back side of the particle, and the three-dimensional solution is very smooth with all 
gradients sufficiently resolved. A more detailed discussion of these three-dimensional 
distributions is given later in this paper, where the higher Reynolds number results are 
presented. 

4.2. Influence of the walls 
We next study the influence of the walls on the flow around the particle. An important 
feature of the flow is that there is not a net flow in the gap, and this implies that the 
net drag and lift are zero. Therefore, it is not possible to use the drag and lift as criteria 
for evaluating the influence of the walls on the flow around the particle. We have 
therefore decided to use the Nusselt number Nu, the non-dimensional torque times the 
Reynolds number ct Re, and the maximum surface stagnation pressure pm,, as flow 
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FIGURE 3. (a) Normal stress and (b) shear stress distributions around a sphere: comparison with 
Taylor's (1932) results. 

indicator variables. The variable ct Re was chosen for a better presentation of the 
results, since a logarithmic scaling of c, over h does not allow the presentation of 
positive and negative torques, and an arithmetic scaling is very sensitive to small 
changes of Reynolds number. The calculated results cover the range of gap widths of 
an order of magnitude, from h = 7.5 to 0.75. For many practical applications it would 
be of interest to study the flow when the walls are close or placed on the particle 
surface; however, this problem would require a new interpolation technique for 
complex control volumes between the particle and wall. Figure 2 shows the grid that 
was used for h = 0.75, and where there are significant regions of both holes and fringe 
points in the main and particle meshes. In figure 2 the outer boundary of the minor grid 
was reduced to two times the particle radius in order to obtain a better resolution 
between the particle and the wall. This refinement did not have an effect on the particle 
global characteristics, and for other gap widths the outer boundary was at three times 
the particle radius. 

The variation of Nusselt number with Reynolds number and wall gap for a non- 
rotating particle is presented in figure 4(a) .  The influence of the walls on the flow 
around a particle which is non-rotating is the most dramatic. For a low Reynolds 
number flow, Re = 0.1, we obtain the maximum sensitivity to the wall gap; however, 
for the walls far away we obtain a solution very close to pure heat conduction around 
a spherical particle in an unbounded fluid. The value of the Nusselt number, 
Nu = 2.18, is consistent with a Reynolds number of 0.1, and it can be further lowered 
by using a smaller Reynolds number. As the walls come closer to the particle the 
Nusselt number increased owing to the direct conduction between the walls and the 
particle. For small values of h there is direct heat conduction path between the wall and 
the particle, and this wall conduction effect is very important. It should be noted that 
the result curves become very close as the wall approaches the surface of the particle 
for the lower Reynolds numbers. At a higher Reynolds number of 100 the walls have 
only a weak influence on the Nusselt number, because the flow is dominated by the 
convection over the particle surface. 

Figure 4(b) presents the non-dimensional torque ct Re for the non-rotating particle, 
and we obtain relatively large values for the torque. (Note: the particle torque is 
defined positive counterclockwise.) The torque dependence implies that the rotation 
speed of a particle in pure shear flow must be a function of the Reynolds number. The 
quantitative dependence on Reynolds number and gap width is not very strong; 
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FIGURE 4. (a) Nusselt number Nu and (b) non-dimensional torque coefficient c, Re as a function 
of wall distance h, w = 0. (c)  Maximum stagnation pressure p,,, as a function of wall distance h. 

however, its behaviour is complex owing to particle blockage. The influence of the 
walls on the low Reynolds number flows is more significant. 

A variable that is sensitive to the flow field is the maximum dimensionless pressure 
on the particle surface, figure 4(c) .  For a high Reynolds number the maximum surface 
pressure decreases with decreasing gap width, and for a non-rotating particle we have 
an important blockage effect along the centreline region of the particle. This blockage 
creates a recirculation of fluid, and the streamlines are diverted into the gap. Thus the 
resistance to the flow in the gap increases, and the flow losses are larger. As the wall 
moves closer to the particle this effect is more important, and the recirculation region 
causes a lowering of the maximum surface pressure. (Note : the low values of pressure 
in figure 4(c) are partially due to the definition of dimensionless pressure.) 

4.3. Influence of particle rotation 
The influence of particle rotation will be limited to values of a wall gap less than 3.75, 
since the previous non-rotating results clearly show that the wall influence is weak for 
larger values of h. Figure 5(a) shows the dependence of the Nusselt number on the 
Reynolds number when the walls are not important, and we have chosen three angular 
velocities, w = 0,0.5, and 1 .O. The angular velocity influence on Nusselt number is only 
significant at the larger Reynolds numbers, and the effect is not a strong one. Another 
feature of the results is that the lowest heat transfer occurs for the fastest rotation, and 
this result is caused by particle rotation spreading surface fluid over the particle, which 
will insulate the particle. At higher Reynolds numbers it may be possible to obtain 
other possibilities due to flow separation. 
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FIGURE 6. Non dimensional torque coefficient c, Re as a function of angular 
velocity w with (a) h = 3.75, and (b) h = 0.75. 

As the walls are moved closer to the particle surface the influence of rotation on the 
Nusselt number is not as strong, figure 5(b). The Nusselt number remains almost 
constant for values lower than Re < 10, and the rate of heat transfer is dominated by 
the distance from the walls. Compared to figure 5(a)  the heat transfer for low Reynolds 
numbers is higher owing to the conductive influence of the two walls. With increasing 
Reynolds number the wall influence is negligible on the heat transfer around the 
particle. 

We will now show the non-dimensional torque ct Re on the particle as a function of 
angular velocity and Reynolds number. Figure 6 (a) presents the torque coefficient 
when the walls are far away from the surface at h = 3.75. In the figure the Reynolds 
number is a parameter, and for an angular velocity of one half the torque approaches 
the lowest value. This result is similar to Taylor's solution; however, these results do 
differ from the low Reynolds number solutions. For high Reynolds numbers the 
particle does not rotate with zero torque at an angular velocity of one half, and the 
curves in figure 6(a) indicate that the zero-torque position moves to lower values of 
angular velocity. When the particle is rotating at a higher angular velocity the 
dependence of the torque on the Reynolds number is much stronger than when the 
particle is fixed in the flow. For low Reynolds numbers the dependence is almost linear 
while at higher ones the nonlinear convective influence becomes more important. 
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As the wall is moved closer to the particle the largest impact is felt for the low 
Reynolds number flow, and the results are shown in figure 6(b) for h = 0.75. At the 
lower Reynolds numbers the wall is the dominant influence and the torque coefficient 
is almost constant with the angular velocity. A detailed analysis of the data has shown 
that the isolated particle has a larger torque coefficient at the higher Reynolds numbers, 
and this is explained in the next paragraph. 

An important result is the angular velocity for which zero torque is obtained on the 
particle. This angular velocity, w ,  is given as a function of Reynolds number in figure 
7 for h = 0.75 and 3.75. For the larger gap the angular velocity approaches the Taylor 
result of one half, although the result is slightly different from one half due to the 
combined influences of the walls, finite Reynolds number, and truncation error. At a 
gap width of h = 0.75 there is a 10 % shift in angular velocity to lower values, and this 
increases slowly with Reynolds number. The reason for this effect is blockage of fluid 
near the particle axis. The fluid blockage creates a recirculation of fluid, and the 
streamlines are diverted into the gap. The resistance to flow in the gap increases, and 
the flow losses are larger. For the low Reynolds numbers the blockage arises purely 
from the walls close to the particle surface. The blockage is also visible when the 
Reynolds number increases, and when the flow is not influenced by the walls. 

The recirculation comes from convective effects and the separation of the flow on the 
back sides of the particle. The effect is not so important for small wall distances since 
recirculation is inhibited. This behaviour is the reason for the transition of the two 
curves in figure 7. At the higher gap width the sensitivity to Reynolds number is 
greater, and we obtain the result of a bigger shift in the zero torque angular velocity 
for a larger gap. 

4.4. Three-dimensional distribution of the surface stresses and heat transfer 
In this section we will present a three-dimensional distribution of flow variables at the 
surface of the particle. Surface pressures and stresses are of interest in applications 
concerning the structural stability of particle systems. In order to be able to handle the 
large amount of data it is necessary to develop new graphical tools to fully comprehend 
the solution. In recent years the use of graphics has progressed rapidly, and we have 
been able to write our own graphics routines. The distributions of the dimensionless 
stresses, pressure and heat transfer as contours of constant values are shown over the 
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A 

particle surface. The contours are linearly distributed between the maximum and 
minimum values, and these plots give a better understanding of the force distribution 
at the particle surface. For the presentations we have chosen a Reynolds number 
Re = 1 at a wall distance of h = 0.75 (figure 8) and Re = 100 at h = 3.75 (figure 9), and 
we will also allow the particle to rotate at an angular velocity of one half. 

Figure 8 (a) shows the pressure contours at the surface of the sphere for a Reynolds 
number of one, and the flow directions are marked with vectors. At the top of the 
picture the flow goes from left to right, and the maximum and minimum values for the 
variables are marked M and N (the numerical values are also given). The pressure 
contours are symmetric around the particle axis with two corresponding maximum and 
minimum values. The high-pressure regions are located on the upstream sides with the 
high pressure in the middle of the sphere. At a Reynolds number of 100 (figure 9a) 
the pressure contours have a totally different shape compared to pure viscous flow. 
The largest effect has been on the pressure minimum, and this is directly due to the 
acceleration of the fluid over the sphere, and the low-pressure regions are shifted 
towards the front side of the particle. The low values of non-dimensional pressure 
reflect the definition of Reynolds number and large losses in the flow. 

The shear stress contours for the low Reynolds number flow also have a high degree 
of symmetry, and the maximum values are on the high-velocity sides of the sphere 
(figure 8b). The maximum shear stress occurs in the regions where the flow tries to 
accelerate the particle, while in the regions of minimum shear stress the particle speeds 
up the fluid. For the high Reynolds number case (figure 9b) the maximum and 
minimum values are shifted, again due to the acceleration of the flow around the 
particle. There is also a normal component of the viscous stress tensor resulting from 
the rotation of the particle. For a fixed particle we do not have any normal viscous 
component, while for a rotating particle the viscous normal force will not vanish. In 
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the Taylor solution the flow is dominated only by the viscous forces and there are no 
effects of inertia. For Re = 1 the magnitude of the normal stress increases to almost 
20% of the viscous shear stress. At higher Reynolds numbers the influence of the 
viscous normal stresses on the stress distribution will decrease since the flow is strongly 
dominated by convection over the particle. The inertia effects caused by the particle 
rotation are much less than those caused by the convection over the particle surface. 
The distribution of normal viscous stresses looks similar to the pressure distribution ; 
however, the minimum and maximum values are interchanged. 

When the walls are close to the particle surface for a low Reynolds number the 
distribution of the pressure and viscous stress contours at the surface do not 
qualitatively change; however, the absolute values increase, the maximum as well as 
the minimum. The most significant changes were visible in the local Nusselt number 
distribution over the particle. The heat transfer distribution for a low Reynolds 
number flow is essentially constant over the surface when the walls have no influence. 
When the channel walls are close to the particle surface there is a definite trend toward 
one-dimensional heat transfer in the channel (figure 8c). The local values have 
increased, with a considerable difference between the maximum and minimum values. 

For higher Reynolds numbers (figure 9c) the contours show a quite different 
behaviour. As expected the local Nusselt number on the surface has increased with 
significant maximum and minimum values. For the high Reynolds numbers the 
influence of the walls is negligible in the range of this investigation. This reflects the 
domination of the convection terms in the flow, which are not significantly changed by 
the walls, even when they are close to the particle surface. 
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5. Conclusions 
The main conclusions of the paper are the following. 
(i) A fully three-dimensional Chimera grid scheme was successfully implemented 

into an incompressible Navier-Stokes computer code for the calculation of particle 
flows. In this study the flow over a rotating particle in Couette flow with varying wall 
distance was investigated. 

(ii) With the help of the Chimera grid scheme approach it was possible to study the 
effects of particlewall interaction on the global variables like Nusselt number and 
dimensionless torque. The most significant changes have been observed on the 
behaviour of the Nusselt number verses the distance of the walls to the particle surface. 

(iii) The zero-torque angular velocity of the particle in shear flow depends on the 
Reynolds number. With increasing Reynolds number the angular velocity of the 
particle is decreasing for the zero-torque condition. 

(iv) A detailed study of the forces and the heat transfer distribution at the surface 
of the particle shows some significant influences of the walls. The effects depend very 
strongly on the Reynolds number, or whether the flow is dominated by convection or 
diffusion of momentum and heat. 
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